Numerical Solution for Singular Boundary Value Problems Using a Pair of Hybrid Nyström Techniques
نویسندگان
چکیده
This manuscript presents an efficient pair of hybrid Nyström techniques to solve second-order Lane–Emden singular boundary value problems directly. One the proposed strategies uses three off-step points. The obtained formulas are paired with appropriate set implemented for first step avoid singularity at left end integration interval. fundamental properties scheme analyzed. Some test problems, including chemical kinetics and physical model solved numerically determine efficiency validity approach.
منابع مشابه
A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملA Solution Routine for Singular Boundary Value Problems
In this report, we discuss the implementation and numerical aspects of the Matlab solver sbvp designed for the solution of two-point boundary value problems, which may include a singularity of the first kind, z′(t) = f(t, z(t)) := 1 (t− a) · z(t) + g(t, z(t)) , t ∈ (a, b), R(z(a), z(b)) = 0. The code is based on collocation at either equidistant or Gaussian collocation points. For singular prob...
متن کاملNumerical Solution of Singularly Perturbed Two-Point Singular Boundary Value Problems Using Differential Quadrature Method
This paper presents the application of Differential Quadrature Method (DQM) for finding the numerical solution of singularly perturbed two point singular boundary value problems. The DQM is an efficient discretization technique in solving initial and/or boundary value problems accurately using a considerably small number of grid points. This method is based on the approximation of the derivativ...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2021
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms10030202